Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский технологический университет «МИСиС» Новотроицкий филиал

Аннотация рабочей программы дисциплины

Тепломассообмен

Закреплена за подразделением Кафедра математики и естествознания (Новотроицкий филиал)

Направление подготовки 13.03.01 Теплоэнергетика и теплотехника

Профиль

Квалификация Бакалавр Форма обучения заочная **73ET** Общая трудоемкость Часов по учебному плану 252 Формы контроля на курсах: в том числе: экзамен 3 курсовая работа 3 28 аудиторные занятия 215 самостоятельная работа часов на контроль 9

Распределение часов дисциплины по курсам

-				
Курс		3		того
Вид занятий	УП	РΠ	1	1010
Лекции	12	12	12	12
Лабораторные	4	4	4	4
Практические	12	12	12	12
В том числе инт.	6	6	6	6
Итого ауд.	28	28	28	28
Контактная работа	28	28	28	28
Сам. работа	215	215	215	215
Часы на контроль	9	9	9	9
Итого	252	252	252	252

	1. ЦЕЛИ ОСВОЕНИЯ
	Цель - формирование базовых представлений о характеристиках процессов теплообмена, протекающих в конкретных технических системах; путях интенсификации процессов теплообмена применительно к основным теплообменным аппаратам.
1.2	Задачи:
1.3	- изучение основных законов при передаче тепла теплопроводностью, конвекцией, тепловым излучением;
1.4	- изучение закономерностей при изменении агрегатного состояния вещества;
1.5	- изучение основ теории подобия;
1.6	- изучение сложного теплообмена применительно к системам и аппаратам.

	2. M	ЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
	Блок ОП:	Б1.В
2.1	Требования к предвар	ительной подготовке обучающегося:
2.1.1	Гидрогазодинамика	
2.1.2	Математика	
2.1.3	Механика жидкости и 1	Газов
2.1.4		рия и инженерная графика
2.1.5	Теория вероятностей и	математическая статистика
2.1.6	Техническая термодина	амика
2.1.7	Электротехника	
2.1.8	Информатика	
2.1.9	Физика	
2.1.10	Химия	
2.2) и практики, для которых освоение данной дисциплины (модуля) необходимо как
	предшествующее:	
2.2.1		теплотехнологические процессы и установки
2.2.2	•	адач с использованием MATLAB
2.2.3	Тепломассообменное о	борудование предприятий
2.2.4		плоэнергетике и теплотехнологии
2.2.5	Научно-исследовательс	ская работа
2.2.6	Подготовка к процедур	е защиты и защита выпускной квалификационной работы
2.2.7	Тепловые электрически	ие станции

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECEHHЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

УК-1: фундаментальные знания

Знать:

УК-1-31 основные законы теплопроводности, конвективного и лучистого теплообмена

ПК-2: научно-исследовательская (в области теплоэнергетики и теплотехники)

Знать

ПК-2-31 основные характеристики и параметры процессов тепломассообмена

ОПК-3: теоретическая профессиональная подготовка (способен демонстрировать применение основных способов получения, преобразования, транспорта и использования теплоты в теплотехнических установках и системах)

Знать:

ОПК-3-31 законы и основные физико-математические модели переноса теплоты и массы применительно к теплотехническим и теплотехнологическим установкам и системам

УК-1: фундаментальные знания

Уметь:

УК-1-У1 выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь для их решения соответствующий физико-математический аппарат

ПК-2: научно-исследовательская (в области теплоэнергетики и теплотехники)

Уметь:

ПК-2-У1 анализировать теплообменные характеристики систем теплотехнического оборудования

ОПК-3: теоретическая профессиональная подготовка (способен демонстрировать применение основных способов получения, преобразования, транспорта и использования теплоты в теплотехнических установках и системах)

Уметь:

ОПК-3-У1 рассчитывать количество теплоты, передаваемой теплопроводностью, конвекцией и излучением в узлах теплотехнического оборудования

УК-1: фундаментальные знания

Владеть:

УК-1-В1 терминологией в области тепломассообмена, основными источниками информации и справочными данными по тепломассообмену

ПК-2: научно-исследовательская (в области теплоэнергетики и теплотехники)

Влалеть:

ПК-2-В1 методами моделирования тепломассообменных процессов

ОПК-3: теоретическая профессиональная подготовка (способен демонстрировать применение основных способов получения, преобразования, транспорта и использования теплоты в теплотехнических установках и системах)

Влалеть:

ОПК-3-В1 основами расчета процессов тепломассопереноса в элементах теплотехнического и теплотехнологического оборудования

	4. СТРУКТУРА И СОДЕРЖАНИЕ								
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы	
	Раздел 1. Классификация процессов теплообмена								
1.1	Предмет курса, общие понятия. Способы теплообмена: теплопроводность, конвекция, излучение. /Лек/	3	0,5		Л1.1 Л1.2 Э1 Э2 Э3				
1.2	Механизмы переноса теплоты в различных средах. Понятие о сплошной среде. /Лек/	3	0,5		Л1.1 Л1.2 Э1 Э2 Э3				
	Раздел 2. Теплопроводность								
2.1	Основные положения теории теплопроводности. Температурное поле, температурный градиент. Тепловой поток и его плотность. Закон Фурье. Коэффициент теплопроводности. /Лек/	3	1		л1.1 л1.2 Э1 Э2 Э3				
2.2	Определение основных характеристик теплообмена теплопроводностью /Пр/	3	1		Л1.1 Л1.2 Э1 Э2 Э3	по форме "Технология проблемного обучения"			
2.3	Дифференциальное уравнение теплопроводности. Коэффициент температуропроводности. Условия однозначности, граничные условия первого, второго, третьего, четвертого родов. Закон Ньютона-Рихмана для теплоотдачи. /Лек/	3	1		Л1.1 Л1.2 Э1 Э2 Э3				

TOTISTOTOXITI	// / / / / / / / / / / / / / / / / / /					
2.4	Теплопроводность при стационарном режиме. Теплопроводность через однослойную и многослойную плоскую стенку. /Лек/	3	0,5	Л1.1 Л1.2 Э1 Э2 Э3		
2.5	Теплопроводность через однослойную и многослойную цилиндрическую стенку. /Лек/	3	0,5	л1.1 л1.2 Э1 Э2 Э3		
2.6	Определение характеристик теплообмена на плоской и цилиндрической поверхности /Пр/	3	1	Л1.1 Л1.2 Э1 Э2 Э3		
2.7	Самостоятельное изучение материала на тему: Способы интенсификации теплопередачи. Теплопередача через ребристую стенку. /Ср/	3	15	Л1.1 Л1.2 Э1 Э2 Э3		
2.8	Самостоятельное изучение материала на тему: Теплопроводность при нестационарном режиме. Типы нестационарных процессов. Нестационарный перенос тепла теплопроводностью. Особенности многомерных задач теплопроводности. Теорема перемножения решений. /Ср/	3	20	Л1.1 Л1.2 Э1 Э2 Э3		
	Раздел 3. Конвективный теплообмен					
3.1	Основные положения теории конвективного теплообмена. Виды конвекции: вынужденная и свободная. Режимы движения жидкости. Пограничный слой. Дифференциальные уравнения конвективного теплообмена. /Лек/	3	1	Л1.1 Л1.2Л2.1 Э1 Э2 Э3		
3.2	Применение методов подобия и размерностей к изучению процессов конвективного теплообмена: обобщенные уравнения подобия, числа подобия, условия подобия физических процессов. /Лек/	3	0,5	Л1.1 Л1.2Л2.1 Э1 Э2 Э3		
3.3	Определение чисел теплового и гидромеханического подобия процессов /Пр/	3	0,5	Л1.1 Л1.2 Э1 Э2 Э3		

10110101071111	1Ka_11p1111_3a04_2020.pix					
3.4	Конвективный теплообмен при вынужденном продольном обтекании плоской поверхности: структура пограничного слоя, влияние различных факторов на теплоотдачу пластины, теплоотдача при ламинарном и турбулентном режиме течения. /Лек/	3	0,5	Л1.1 Л1.2 Э1 Э2 Э3		
3.5	Определение коэффициента теплоотдачи и теплового потока при продольном обтекании пластины /Пр/	3	1	Л1.1 Л1.2 Э1 Э2 Э3		
3.6	Теплоотдача при вынужденном течении жидкости в каналах: режимы течения и теплоотдача в гладких трубах круглого и некруглого сечений, в изогнутых трубах. /Лек/	3	0,5	Л1.1 Л1.2Л2.1 Э1 Э2 Э3		
3.7	Определение коэффициента теплоотдачи и теплового потока при движении потока внутри каналов /Пр/	3	1	Л1.1 Л1.2Л2.1 Э1 Э2 Э3		
3.8	Теплоотдача при вынужденном поперечном обтекании трубы и пучка труб: поперечное обтекание одиночной трубы, основные пучки труб, сравнение их теплоотдачи. /Лек/	3	0,5	Л1.1 Л1.2Л2.1 Э1 Э2 Э3		
3.9	Определение коэффициента теплоотдачи при поперечном обтекании труб и пучков /Пр/	3	1	Л1.1 Л1.2Л2.1 Э1 Э2 Э3		
3.10	Теплоотдача при сободной конвекции /Лек/	3	1	Л1.1 Л1.2 Э1 Э2 Э3		
3.11	Определение коэффициента теплоотдачи и теплового потока при свободной конвекции /Пр/	3	1,5	Л1.1 Л1.2 Э1 Э2 Э3		
3.12	Определение теплоемкости воздуха методом нагрева потока при постоянном давлении. /Лаб/	3	2	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2 Э3	по форме "Групповая работа"	
3.13	Подготовка к лабораторному занятию /Ср/	3	4	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2 Э3		
3.14	Выполнение курсовой работы /Ср/	3	70	Л1.1 Л1.2Л2.1Л3. 2 Э1 Э2 Э3		
	Раздел 4. Теплообмен при фазовых превращениях					
4.1	Конденсация, основные физические представления. Виды конденсации. Теплообмен при пленочной и капельной конденсации . /Лек/	3	1	Л1.1 Л1.2 Э1 Э2 Э3		

1 011010 1 011111						
4.2	Определение коэффициента теплоотдачи при коденсации /Пр/	3	1	Л1.1 Л1.2Л2.1 Э1 Э2 Э3	по форме "Технология проблемного обучения"	
4.3	Кипение, режимы кипения жидкости. Теплообмен при пузырьковом и пленочном кипении. Кривая кипения, кризисы кипения 1 и 2 рода. /Лек/	3	1	Л1.1 Л1.2Л2.1 Э1 Э2 Э3		
4.4	Определение коэффициента теплоотдачи и теплового потока при кипении жидкости /Пр/	3	1	Л1.1 Л1.2Л2.1 Э1 Э2 Э3		
4.5	Определение теплоемкости жидкости методом нагрева потока жидкости. /Лаб/	3	2	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2 Э3	по форме "Групповая работа"	
4.6	Подготовка к лабораторному занятию /Ср/	3	4	Л1.1 Л1.2Л2.1Л3. 1 Э1 Э2 Э3		
	Раздел 5. Теплообмен излучением					
5.1	Виды и характеристика лучистых потоков. Поглощательная, отражательная и пропускательная способность. Основные законы теплового излучения: Планка, Вина, Стефана-Больцмана, Кирхгофа, Ламберта. /Лек/	3	1	л1.1 л1.2 Э1 Э2 Э3		
5.2	Определение характеристик теплообмена излучением между телами, /Пр/	3	2	Л1.1 Л1.2 Э1 Э2 Э3		
5.3	Самостоятельное изучение материала на тему: Теплообмен между твердыми телами, разделенными прозрачной средой. Теплообмен при наличии экранов. /Ср/	3	15	Л1.1 Л1.2 Э1 Э2 Э3		
5.4	Самостоятельное изучение материала на тему: Теплообмен между телами, произвольно расположенными в пространстве. Геометрические свойства излучающих систем. Методы определения угловых коэффициентов. /Ср/	3	15	Л1.1 Л1.2 Э1 Э2 Э3		
5.5	Самостоятельное изучение материала на тему: Теплообмен в поглощающих и излучающих средах. Оптическая толщина среды. Особенности излучения газов и паров. /Ср/	3	15	Л1.1 Л1.2 Э1 Э2 Э3		

5.6	Самостоятельное изучение материала на тему: Теплообмен между газом и твердой поверхностью. Сложный теплообмен. /Ср/ Раздел 6. Массообмен	3	15	Л1.1 Л1.2 Э1 Э2 Э3		
1		2	-	H1 1 H1 0		
6.1	Аналогия процессов массои теплообмена. Поток массы компонента, вектор плотности потока массы. Закон Фика. Закономерности процессов молекулярного массои теплообмена. /Лек/	3	I	Л1.1 Л1.2 Э1 Э2 Э3		
6.2	Определение основных характеристик массообмена /Пр/	3	1	Л1.1 Л1.2 Э1 Э2 Э3		
6.3	Самостоятельное изучение материала на тему: Дифференциальное уравнение и закономерности конвективного массопереноса. Массоотдача. Числа подобия для конвективного переноса массы. /Ср/	3	15	Л1.1 Л1.2 Э1 Э2 Э3		
6.4	Подготовка к экзамену /Ср/	3	27	Л1.1 Л1.2Л3.1 Л3.2 Э1 Э2 Э3		
6.5	Экзамен по дисциплине /Экзамен/	3	9			