Документ полтисан простой алектронной полтиство НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Информация о владельце:

ФИО: Котова Лариса Анатольевна

Должность: Директор филиала

Дата подписания: 10. Федеральное государственное автономное образовательное учреждение Уникальный программный ключ:

высшего образования

10730ffe6b1ed03417444669d97700b86e⁵504e7eдовательский технологический университет «МИСиС» Новотроицкий филиал

Аннотация рабочей программы дисциплины

Химия высокомолекулярных соединений

Закреплена за подразделением Кафедра математики и естествознания (Новотроицкий филиал)

18.03.01 Химическая технология Направление подготовки

Профиль

Квалификация Бакалавр Форма обучения заочная Общая трудоемкость 43ET

Часов по учебному плану 144 Формы контроля на курсах:

в том числе: экзамен 3

18 аудиторные занятия 117 самостоятельная работа часов на контроль 9

Распределение часов дисциплины по курсам

Курс	3		Итого	
Вид занятий	УП	РΠ	l Pi	1010
Лекции	8	8	8	8
Лабораторные	6	6	6	6
Практические	4	4	4	4
Итого ауд.	18	18	18	18
Контактная работа	18	18	18	18
Сам. работа	117	117	117	117
Часы на контроль	9	9	9	9
Итого	144	144	144	144

1. ЦЕЛИ ОСВОЕНИЯ

1.1 дать обучающемуся базовые знания по основам физико-химических процессов, протекающих в системах с высокоразвитой межфазной границей раздела, что обеспечит понимание физико-химической сущности явлений, наблюдающихся в природе и технике при решении стандартных задач и проблем в формирование подхода к изучению свойств высокомолекулярных соединений на основе электронных и стереохимических представлений с использованием установленных механизмов реакций и физико-химических методов исследования, получение знаний о свойствах высокомолекулярных соединений, которые широко используются в настоящее время в технике и производстве.

	2. МЕСТО В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ						
	Блок ОП:	Б1.Б					
2.1	Требования к предвар	ительной подготовке обучающегося:					
2.1.1	Математика						
2.1.2	Начертательная геомет	рия и инженерная графика					
2.1.3	Прикладная механика						
2.1.4	Теория вероятностей и	математическая статистика					
2.1.5	Учебная практика по п	олучению первичных профессиональных умений					
2.1.6	Физика						
2.1.7	Физическая химия						
2.1.8	Аналитическая геометр	оия и векторная алгебра					
2.1.9	Химия						
2.2) и практики, для которых освоение данной дисциплины (модуля) необходимо как					
	предшествующее:						
2.2.1	Моделирование химико	о-технологических процессов					
2.2.2	Подготовка к процедур	е защиты и защита выпускной квалификационной работы					

3. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ФОРМИРУЕМЫМИ КОМПЕТЕНЦИЯМИ

4. СТРУКТУРА И СОДЕРЖАНИЕ									
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Формируемые индикаторы компетенций	Литература и эл. ресурсы	Примечание	КМ	Выполн яемые работы	
	Раздел 1. «Основные понятия и полимерные тела»								
1.1	Основные понятия и определения: полимер, олигомер, макромолекула, мономерное звено, степень полимеризации, контурная длина цепи. Молекулярные массы и молекулярномассовые распределения (ММР). /Лек/	3	2		Л1.1 Л1.2Л2.2 Э1 Э2 Э3				
1.2	Классификация полимеров в зависимости от происхождения, химического состава и строения основной цепи, в зависимости от топологии макромолекул. /Лек/	3	2		Л1.1 Л1.2Л2.2 Э1 Э2 Э3				
1.3	Пластификация полимеров. Правила объемных и молярных долей. Механические модели аморфных полимеров. /Пр/	3	2		Л1.1 Л1.2Л2.2 Э1 Э2 Э3				

1.4	Самостоятельное изучегние материала в LMS Canvas по теме:Природные и синтетические полимеры. Органические, элементоорганические и неорганические полимеры. Линейные, разветвленные, лестничные и сшитые полимеры. Гомополимеры, сополимеры блоксополимеры, гомоцепные и гетероцепные полимеры. /Ср/	3	40	Л1.1 Л1.2Л2.2 Э1 Э2 Э3		
1.5	Изучение скорости набухания полимеров /Лаб/	3	2	Л1.1 Л1.2Л2.2Л3. 1 Э1 Э2 Э3		
	Раздел 2. «Синтез полимеров»					

2.1	Конфигурация	3	40	Л1.1		
2.1	макромолекулы и		10	Л1.2Л2.2		
	конфигурационная			91 92 93		
	изомерия. Локальные					
	конфигурационные					
	изомеры в					
	макромолекулах полимеров					
	монозамещенных этиленов					
	и диенов.					
	Стереорегулярные					
	макромолекулы.					
	Конформация					
	макромолекулы и					
	конформационная					
	изомерия.					
	Внутримолекулярное					
	вращение и гибкость					
	макромолекулы.					
	Количественные					
	характеристики					
	гибкости макромолекул					
	(среднее расстояние между					
	концами цепи, радиус					
	макромолекулы,					
	статистический					
	сегмент, персистентная					
	длина).					
	Свободносочлененная					
	цепь как идеализированная					
	модель гибкой					
	макромолекулы, функция					
	распределения расстояний					
	между концами					
	свободносочлененной цепи					
	(гауссовы					
	клубки). Средние размеры					
	макромолекулы с учетом					
	постоянства валентных					
	углов. Энергетические					
	барьеры					
	внутреннего вращения;					
	понятие о природе					
	тормозящего					
	потенциала. Поворотные					
	изомеры и гибкость					
	реальных					
	цепей. Связь гибкости					
	(жесткости) макромолекул					
	СИХ					
	химическим строением:					
	факторы, влияющие на					
	гибкость реальных					
2.2	цепей. /Ср/		2	П1 1		
2.2	Полимеризация.	3	2	Л1.1		
	Термодинамика			Л1.2Л2.2		
	полимеризации.			Э1 Э2 Э3		
	Понятие о					
	полимеризационно-					
	деполимеризационном					
	равновесии. Классификация					
	цепных					
	полимеризационных					
2.2	процессов. /Лек/	2	2	П1 1		
2.3	Синтез поливинилового	3	2	Л1.1		
	спирта /Лаб/			Л1.2Л2.2Л3. 1		
				91 92 93		
				J1 J2 J3		

				•			
2.4	Сополимеризация. Реакционная способность	3	2		Л1.1 Л1.2Л2.2		
	мономеров и радикалов.				Э1 Э2 Э3		
	Радикальная						
	сополимеризация.						
	Уравнение состава						
	сополимеров.						
	Относительные						
	реакционные способности						
	мономеров и						
	радикалов. Уравнение						
	состава						
	сополимера. /Пр/						
	Раздел 3. «Химические						
	свойства						
2.1	полимеров»	2			T1 1		
3.1	Деструкция полимеров.	3	2		Л1.1		
	Механизм цепной и				Л1.2Л2.1 Л2.2		
	случайной деструкции. Деполимеризация.				91 92 93		
	Термоокислительная и				J1 J2 J3		
	фотохимическая						
	деструкция. Принципы						
	стабилизации						
	полимеров. /Лек/						
3.2	Получение и свойства	3	2		Л1.1		
	фенол-формальдегидных				Л1.2Л2.2Л3.		
	смол /Лаб/				1		
					Э1 Э2 Э3		
3.3	Самостоятельное изучегние	3	37		Л1.1		
	материала в LMS Canvas по				Л1.2Л2.1		
	теме:Использование				Л2.2		
	химических реакций				Э1 Э2 Э3		
	макромолекул						
	для химического и						
	структурно-химического						
	модифицирования						
	полимерных материалов и						
	изделий. Привитые и блок-						
	сополимеры: основные принципы синтеза и физико						
	-механические						
	свойства. /Ср/						
3.4	/Экзамен/	3	9		Л1.1		
J.¬	/ SKJUNCII/		'		Л1.2Л2.2		
			l		V11.2V12.2		